

Evidence to Recommendations and GRADE for PCV13 Use Among Immunocompetent Adults ≥65 Years Old

Almea Matanock, MD, MS

Advisory Committee on Immunization Practices February 28, 2019

Current Adult Pneumococcal Vaccine Recommendations

- In 2012 ACIP recommended PCV13 in series with PPSV23 for adults ≥19 years old with immunocompromising conditions
 - Not currently being re-evaluated
- In 2014 ACIP recommended PCV13 in series with PPSV23 for all PCV13naïve adults ≥65 years old with the following considerations:
 - Short term use warranted because of the remaining PCV13-type disease burden
 - Long term utility may be limited due to anticipated indirect effects from pediatric PCV13 use

Policy Question

- Should PCV13 be administered routinely to all immunocompetent adults aged ≥65 years in the context of indirect effects from pediatric PCV use experienced to date?
 - <u>Population</u>: Immunocompetent adults ≥65 years old, with and without chronic medical conditions
 - <u>Intervention</u>: PCV13 at ≥65 years old in series with PPSV23, in the context of indirect effects
 - <u>Comparison(s)</u>: PPSV23 alone at \geq 65 years old, in the context of indirect effects
 - <u>Outcomes</u>: invasive pneumococcal disease (IPD), pneumonia, mortality, and PCV13 safety

ACIP Evidence to Recommendation (EtR) Framework

- Statement of problem
 - Public health priority
 - Burden of disease
- Benefits and harms
 - Balance of desirable and undesirable effects
 - Certainty in evidence
- Values and preferences of target population
- Acceptability to stakeholders
- Resource use
 - Health economic analyses
- Feasibility
 - Implementation considerations

Evidence to Recommendations

Statement of problem

- Benefits and harms with GRADE
- Values and preferences of target population
- Acceptability to stakeholders
- Resource use
- Feasibility

Context: Indirect Effects from Pediatric PCV Use Experienced Among Adults ≥65 Years Old

- Nine-fold reduction in vaccine-type invasive pneumococcal disease (IPD) in the US since pediatric PCV (PCV7 and PCV13 combined) introduction¹
 - Indirect effects from PCV13 alone led to a 3 fold reduction (2010–2014)
 - Plateau in incidence since 2014 (combined direct and indirect effects)
- Similar reductions seen in IPD in Europe since pediatric PCV13 introduction²
 - Decline 77% in PCV7-type and 38% PCV13non7-type IPD (2009–2015)

¹Active Bacterial Core Surveillance, <u>https://www.cdc.gov/abcs/reports-findings/surv-reports.html</u>, comparing 2000 to 2014 ²Hanquet et al. 2018

Context: Indirect Effects from Pediatric PCV Use Experienced Among Adults ≥65 Years Old

- Most studies demonstrate a reduction in all-cause pneumonia since introduction of PCVs for children in 2000¹
 - In the U.K. PCV7-type pneumonia declined by 88% and PCV13non7-type pneumonia declined by 30% (2008–2013)²
 - In the U.S. since pediatric PCV13 introduction, pneumococcal pneumonia hospitalizations have declined (2010–2014)³

Pneumococcal Pneumonia Among Adults³

¹Tsaban et al. 2017
²Rodrigo et al. 2015
³Lessa ACIP October 2018

Vaccine Coverage: Percentage of Medicare beneficiaries aged ≥65 years with claims submitted for pneumococcal vaccination —

Each enrollment period extends from september 19 of the first year through september 18 of the subsequent year, with the exception of the 2011-12 period, which ends on October 12, 2012, corresponding to the date of publication of the first recommendation for the use of 13-valent pneumococcal conjugate vaccine (PCV13) in series with 23-valent pneumococcal polysaccharide vaccine (PPSV23) in adults with certain immunocompromising conditions; denominators include all beneficiaries continuously enrolled in Medicare Parts A and B for the duration of the enrollment period.

https://www.cdc.gov/vaccines/imz-managers/coverage/adultvaxview/pubs-resources/pcv13-medicare-beneficiaries.html

Summary: Vaccine-Preventable Disease Burden (PCV13)

- PCV13-type IPD incidence among adults ≥65 years in 2015–2017
 - Incidence plateaued at 5/100,000
 - PCV13 serotypes account for 20% of all IPD plus an addition 3% including 6C
 - Common PCV13 serotypes (% of PCV13-types): 3 (66%), 19A (13%), 7F (13%), 19F (12%)
- PCV13-type pneumonia incidence among adults ≥65 years in 2015–2016
 - Incidence estimates range across studies 17⁺ to 76/100,000
 - PCV13 serotypes account 3.7% of all-cause pneumonia
 - Common PCV13 serotypes (% of PCV13-types): 3 (37%), 19A (28%), 6A (12%), 5 (9%), 7F (7%)

*Estimated by applying the %PCV13-type IPD to the non-invasive pneumococcal pneumonia (NIPP) incidence estimate from the Surveillance for Non-invasive Pneumococcal Pneumonia (SNiPP)

Remaining PCV13-type Disease Burden

Compared to Other Vaccine-Preventable Diseases

Disease	Outcome	Incidence per 100,000	Adult Vaccine Recommendation
Pneumococcal	Invasive and non-invasive PCV13-type pneumonia hospitalization among ≥65 years old	76	≥65 years old
Herpes zoster	Herpes zoster cases among 50 year olds (incidence increases with age)	530	≥50 years old
Influenza	Laboratory confirmed influenza hospitalization among ≥65 years old in the 2017-2018 season	437	Universal, all adults
Meningococcal	Serogroup B meningococcal meningitis among 16–23 year olds	0.14	Individual clinical decision for healthy 16–23 year olds

Evidence to Recommendations

- Statement of problem—Work Group Perspective
- Benefits and harms with GRADE
- Values and preferences of target population
- Acceptability to stakeholders
- Resource use
- Feasibility

Burden of Disease

- PCV13-type disease reduced through indirect effects but burden still remains in older adults
- Uncertainty about the burden of PCV13-type pneumococcal pneumonia
- Since 2014 recommendation, at the population level, no further reductions in IPD, and inconsistent results from pneumonia impact studies
- Question: Is the PCV13-type disease burden still of public health importance?
- Judgement:

ACIP EtR Framework Elements

- Statement of problem
- Benefits and harms with GRADE
- Values and preferences of target population
- Acceptability to stakeholders
- Resource use
- Feasibility

Policy Question

- Should PCV13 be administered routinely to all immunocompetent adults aged ≥65 years in the context of indirect effects from pediatric PCV use experienced to date?
 - <u>Population</u>: Immunocompetent adults ≥65 years old, with and without chronic medical conditions
 - <u>Intervention</u>: PCV13 at ≥65 years old in series with PPSV23, in the context of indirect effects
 - <u>Comparison(s)</u>: PPSV23 alone at \geq 65 years old, in the context of indirect effects
 - <u>Outcomes</u>: invasive pneumococcal disease (IPD), pneumonia, mortality, and PCV13 safety

Outcomes of Interest

Туре	Outcomes	Importance
	PCV13-type IPD	Critical
Benefits	PCV13-type non-bacteremic pneumococcal pneumonia (NIPP)	Critical
	PCV13-type disease mortality	Critical
Harms	Serious adverse events associated with PCV13	Critical

Measures of Effect Evaluated:

- Efficacy/effectiveness: individual-level effects associated with PCV13 use (PCV13 direct effects)
- Impact: population level changes in disease outcomes associated with PCV13 use (PCV13 direct and indirect effects)

Evidence Retrieval

- Systematic review of studies from Medline, Embase, CINAHL, Cochrane, and clinicalstrials.gov databases using search string:
 - (Pneumococcal Vaccin*) OR (pneumococcus vaccin*) OR (pneumonia* vaccin*) OR
 PCV13 OR pneumovax OR PPSV23 OR prevnar* OR pnu-immune AND senior* OR aged
 OR older adult* OR elderly OR (over 65) OR (older 65) OR >=65 OR =>65
- Dates January 1, 2014 to July 3, 2018
- Efforts made to obtain unpublished or other relevant data
 - Presentations to the work group from industry and independent researchers

Exclusion Criteria

- Observational studies
 - Low (<20%) PCV13 coverage in the population studied
 - Not applicable to the U.S. population (i.e. low pediatric vaccine coverage, no pediatric PCV13 program, low income country)
- Safety studies
 - PCV13 co-administered with other vaccines*
 - Randomized control trials (RCTs) with comparison groups other than PPSV23 or placebo

*included in the initial review process, but because SAEs could not be attributed to a single vaccine when vaccines were coadministered we excluded these studies from GRADE

Review Process

PCV13 Efficacy, Effectiveness, and Impact on PCV13-type IPD

Study	Population	Method	VE	(95%CI)
Bonten [1]*	Dutch adults ≥65 years old	Community Acquired Pneumonia Immunization Trial in Adults (CAPiTA) RCT (PCV13 vs placebo) (n=84,496)	75%	(41, 91)
Gessner [2]*	Dutch adults ≥65 years old	CAPiTA RCT (PCV13 vs placebo) (n=84,496) +	76%	(48, 89)+
Pilishvili [3]	US adults ≥65 years old	Case-control; Active Bacterial Core Surveillance (ABCs) IPD cases and age- and zip code matched population-based controls (n=1,530)	59%	(11, 81)
Pilishvili [4]	US adults ≥65 years old	Case-control; ABCs IPD cases enrolled in Medicare part B matched to controls on age group, census tract, and length of enrollment in part B (n=10,851)	47%	(4, 71)
			% change	(95%CI)
Unpublished ABCs data [5]	US adults ≥65 years old	Pre-post analysis comparing incidence in 2013-14 vs 2016-17 (n=4,700,000)	-13%	(-26, 2)

*All episodes of PCV13-type IPD using modified intent-to-treat (mITT)

*Pfizer funded studies

Pneumonia Outcomes Included

- PCV13-type pneumonia most specific outcome
 - Studies using Pfizer serotype specific urine antigen test (not commercially available)
 - Not able to detect the serotype for cases caused by non-invasive non-PCV13 types
- All-cause pneumonia most sensitive, but least specific outcome
 - Expected measure of effect small due to smaller proportion of vaccine preventable disease
 - Replacement with non-PCV13-types can obscure impact on PCV13-type disease

PCV13 Effectiveness and Impact on Pneumonia — PCV13-type Pneumonia Including IPD

Study	Population	Method	VE	(95%CI)
Bonten [1]*	Dutch adults ≥65 years old	CAPiTA RCT (PCV13 vs placebo) (n=84,496)	45%	(14, 65)
McLaughlin [7]*	U.S. adults ≥65 years old	Louisville cohort study [8] nested test negative design case- control; non-PCV13-type pneumonia as controls (n=2,034)	71%	(6, 91) [†]
Prato [9]*	Italian adults ≥65 years old	Test-negative design case-control; non-PCV13-type pneumonia as controls (n=186)	38%	(-131, 89) ⁱⁱ
			% change	(95%CI)
Swerdlow [10]*	U.S. adults ≥65 years old	Louisville cohort study [8] pre-post analysis comparing incidence in Jun2014-May2015 vs Jun2015-May2016 (n=587,499)	-32%	(-8, -49)

ⁱIn the primary analysis, reported here, the controls were defined as all non-PCV13-type pneumonia. In a sensitivity analysis, where controls were defined as non-PCV13-type <u>pneumococcal</u> pneumonia, the VE was 69% (-47, 93).

ⁱⁱS. pneumoniae confirmed in nasopharyngeal, sputum, bronchoalveolar-lavage, or sterile site on polymerase chain reaction (PCR) or culture

*Pfizer funded study

PCV13 Effectiveness against Pneumonia

- PCV13-type NIPP Exclusively

Study	Population	Method	VE	(95%CI)
Webber [6]*	Dutch adults ≥65 years old	CAPiTA RCT (PCV13 vs placebo) (n=84,496)	43%	(12, 63)
McLaughlin [7]*	U.S. adults ≥65 years old	Louisville cohort study [8] nested test negative design case-control; non-PCV13-type pneumonia as controls (n=2,034)	68%	(-6, 90)

PCV13 Impact on Pneumonia — NIPP

Study	Population	Method	% Change (95%CI)
Gierke [11]	US adults ≥65 years old	Pre-post analysis comparing incidence in 2013-14	-35% (-14, -49) ⁱ
		vs 2015-16 (n=1,948,275)	

ⁱ No change observed from 2014–2016 (most recent year of data), p=0.5.

PCV13 Effectiveness against Pneumonia

- All-Cause Pneumonia

Study	Population	Method	VE (95%CI)	
Gessner [2]*	Dutch adults ≥65 years old	CAPiTA RCT (PCV13 vs placebo) (n=84,496) ⁺	8% (1, 15)+	
Lessa [13]	U.S. adults ≥65 years old enrolled in Medicare part A/B	Cohort; discrete time survival model stratified by influenza vaccine receipt and influenza season (n=24,121,625)	6–11% (4, 14)	

⁺All episodes of clinical pneumonia using modified intent-to- treat (mITT) and exact method

PCV13 Efficacy and Impact on Mortality — PCV13-type Disease Mortality

Study	Population	Method	Outcome	VE	(95%CI)
Bonten [1]*	Dutch adults ≥65 years old	RCT (PCV13 vs placebo) (n=84,496)	PCV13-type disease mortality	0%	(-1280, 93)
			All-cause mortality	-0.03%	(-5, 5)
				% change	(95%CI)
Unpublished ABCs data [3]	US adults ≥65 years old	Pre-post analysis comparing incidence in 2013-14 vs 2016- 17 (n=4,700,000)	PCV13-type IPD mortality	2%	(-30, 49)

Annual Number Needed to Vaccinate (NNV) among Adults ≥65 Years Old*

	Incidence per	Vaccine Effectiveness						
Outcome	100,000	(VE)	(95%CI)	NNV	(95%CI)			
PCV13-type IPD	5 ^a	76% ^b	(48, 89)	26,300	(22,500, 41,700)			
PCV13-type pneumonia,								
inpatient	17 ^c -76 ^d	43% ^e	(12, 63)	3,000–14,000	(2,100, 50,200)			
PCV13-type pneumonia,								
outpatient	88 ^f	43% ^e	(12, 63)	2,600	(1,800, 9,500)			
*Calculation: NNV= 1/(inc	*Calculation: NNV= 1/(incidence rate*VE)							

^a Unpublished ABCs data [3]

^b Bonten [1]*

^c Gierke [11], estimated by applying the %PCV13-type IPD to the NIPP incidence estimate

^d Swerdlow [10]*

^e Webber [6]*

^fNelson et al. 2008, estimated as 5.1% of all-cause outpatient pneumonia is PCV13-type

Serious Adverse Events (SAEs) from RCTs — PCV13 Safety Critical Outcome

				% SAE			
				among		% SAE	
			Observation	PCV13		among	Control
Study	Population	Study Design	period	vaccinated	PCV13 (N)	controls	(N)
	Dutch adults ≥65						
Bonten [1]*	years old	RCT (PCV13 vs placebo)	1 month	0.8%	42,237	0.7%	42,255
	US adults 55-74	RCT (PCV13 with and without					
Jackson [14]	years old	prior PPSV23)	6 months	2.3%	883	NA	NA
Juergens	South African adults						
[15]*	≥65 years old	RCT (PCV13 vs PPSV23)	43 days	0.6%	309	0.3%	301
Shiramoto	Japanese adults ≥65						
[16]*	years old	RCT (PCV13 vs PPSV23)	43 days	0.3%	382	0%	382

Serious Adverse Events (SAEs) from Observational Studies — PCV13 Safety Critical Outcome

				% SAE			
				among		% SAE	
			Observation	PCV13		among	Control
Study	Population	Study Design	period	vaccinated	PCV13 (N)	controls	(N)
Durando	Italian adults ≥70						
[18]*	years old	Cohort study	6 months	0.1%	871	NA	NA
		Cohort study (Vaccine					
	US adults ≥65 years	Adverse Events Reporting					
Haber [19]	old	System [VAERS])		<0.01%	~9,269,000	NA	NA
Shiramoto	Japanese adults ≥50						
[20]*	years old	Cohort study	1 month	0%	271	NA	NA
	Mexican adults ≥65						
Tinoco [21]*	years old	Cohort study	1 month	1.2%	161	NA	NA
	US adults ≥65 years	Cohort study (PCV13 vs					
Tseng [22]	old	PPSV23)	6 months	1.2%-5.8%	5,055	2.4%-5.5%	1,124

*Pfizer funded studies

GRADE Summary

Outcome	Design	# studies [references]	Initial Evidence Type	Risk of Bias	Inconsistency	Indirectness	Imprecision	Evidence Type
Benefits	•				•	•	•	
PCV13-type invasive pneumococcal disease (IPD)		1 — [1, 2]	1	Not serious	N/A	Serious	Not serious	2
PCV13-type pneumonia	RCT	1 —[1, 2, 6]	1	Not serious	N/A	Not serious	Not serious	1
Mortality from PCV13-type disease		1-[1]	1	Not serious	N/A	Not serious	Very serious	2
PCV13-type IPD		4 — [3-5]	3	Serious	Not serious	Serious	Not serious	4
PCV13-type pneumonia	Observ ational	5 — [7, 9-12]	3	Very serious	Very serious	Serious	Very serious	4
Mortality from PCV13-type disease		1 — [5]	3	Serious	N/A	Serious	Very serious	4
Harms								
	RCT	4 — [1, 13-15]	1	Serious	Not Serious	Serious	N/A	2
Serious adverse events	Observ ational	5 — [16-20]	3	Serious	Not Serious	Not Serious	N/A	2

Summary: PCV13 Effects Among Adults ≥65 Years Old

- PCV13 is effective/efficacious in preventing:
 - PCV13-type IPD
 - PCV13-type NIPP, but the effectiveness data inconsistent across studies
- At the population level, no impact on IPD and inconsistent data across studies for impact on pneumonia observed since 2014
- No impact on mortality demonstrated
- No concerning safety signals detected

ACIP EtR Framework Elements

- Statement of problem
- Benefits and harms with GRADE Work Group Perspective
- Values and preferences of target population
- Acceptability to stakeholders
- Resource use
- Feasibility

Anticipated Desirable Effects

- Summary: PCV13 effective in preventing disease among older adults, but the remaining disease burden low and predominated by serotype 3
- Question: How substantial are the desirable anticipated effects?
- Judgement: Minimal Small Moderate Large Don't Varies know
- Question: What is the overall certainty of this evidence for the critical outcomes?
- Judgement: No included 4 3 2 1 studies Very low Low Moderate High

Anticipated Undesirable Effects

- Summary: No concerning safety signals have been detected
- Question: How substantial are the undesirable anticipated effects?
- Judgement: Minimal Small Moderate Large Don't Varies know
- Question: What is the overall certainty of this evidence for the critical safety outcomes?
- Judgement: No included 4 3 2 1 studies Very low Low Moderate High

Balance of Benefits and Harms of PCV13 Use Among Adults ≥65 Years Old

- Summary: Benefits of continued PCV13 use relatively small, but outweighed the risks, which are also small
- Question: Do the desirable effects outweigh the undesirable effects before considering values, acceptability, recourses used and feasibility?

Judgement:	Fa
	inten

avors Favors Favors Favors Unclear rvention comparison both neither

ACIP EtR Framework Elements

- Statement of problem
- Benefits and harms with GRADE
- Values and preferences of target population
- Acceptability to stakeholders
- Resource use
- Feasibility

Values and Preferences of Older Adults

- Evidence: very limited data available
 - Very few studies focus on older adult perceptions of PCV13 specifically
 - Pneumonia perceived as severe (more so than influenza), sometimes fatal illness¹⁻³
 - Low perceived personal susceptibility of pneumonia¹⁻²
- Work group perspective: Potential protection against pneumonia likely outweighs the side effects of PCV13 for older adults

¹ Doshi et al. 2016
² Brown et al. 2017 (PPSV23 only)
³ Kaljee et al. 2017

ACIP EtR Framework Elements

- Statement of problem
- Benefits and harms with GRADE
- Values and preferences of target population Work Group Perspective
- Acceptability to stakeholders
- Resource use
- Feasibility

Values and Preferences of Older Adults

- Question: Do adults ≥65 years old feel that the desirable effects are large relative to the undesirable effects?
- Judgement: No Probably Uncertain Probably Yes Varies
- Question: Is there important uncertainty about or variability in how much adults ≥65 years old value the main outcomes?

Judgement:	Important uncertainty or variability	Possibly important uncertainty or variability	Probably no important uncertainty or variability	No important uncertainty or variability	No known undesirable outcomes
	variability	variability	variability	or variability	outcomes

ACIP EtR Framework Elements

- Statement of problem
- Benefits and harms with GRADE
- Values and preferences of target population
- Acceptability to stakeholders
- Resource use
- Feasibility

Acceptability Evidence

- Limited studies assessing acceptability among stakeholders
- Three studies reviewed by the workgroup found:
 - Current recommendations are confusing for providers¹
 - Providers recommended continuing with current recommendation²
 - Keeping the current recommendations maybe best programmatically if new conjugate vaccines available soon³
 - Reimbursement for vaccine is still a programmatic issue³

- ¹ Hurley et al. 2018
- ² Pfizer sponsored provider survey, unpublished, 2018
- ³Association of Immunization Managers (AIM) survey, unpublished, 2018

ACIP EtR Framework Elements

- Statement of problem
- Benefits and harms with GRADE
- Values and preferences of target population
- Acceptability to stakeholders Work Group Perspective
- Resource use
- Feasibility

Deliberations on the Acceptability of Continued PCV13 Use Among Adults ≥65 Years Old

- Considerations for <u>discontinuing</u> PCV13: overall impact on PCV13-type disease from vaccinating older adults is minimal in the context of indirect effects from pediatric PCV use
- Considerations for <u>continuing</u> PCV13
 - PCV13 can provide individual-level protection against remaining burden of disease
 - Frequent changes in recommendations may negatively impact the perceived importance of future adult vaccine recommendations and may present implementation challenges

Assessment Acceptability of Continued PCV13 Use Among Adults ≥65 Years Old

- Question: Is the intervention acceptable to key stakeholders?
- Judgement: No Probably Uncertain Probably Yes Varies no yes

ACIP EtR Framework Elements

- Statement of problem
- Benefits and harms with GRADE
- Values and preferences of target population
- Acceptability to stakeholders
- Resource use
- Feasibility

Note: Axis has changed from previous graphs of CERs to accommodate wider range in estimated CERs.

¹-These do not include results from probabilistic sensitivity analyses. ²-Schiffner-Rohe (2016), Falkenhorst (2017), Tin Tin Htar (2017).³-McLaughlin (2018). ⁴Ramirez (2017) and Pfizer Inc. internal data

Resources Used: Comparison of 2013 vs 2019

		2013 Model Projection for 2013 (2017\$)	2013 Model Projection for 2019 (2017\$)	2018 Model Projection for 2019 (2017\$) (PCV13 VE for ST3 IPD and ST3 pneumonia 0%)	2018 Model Projection for 2019 (2017\$) (PCV13 VE for ST3 IPD 26% and ST3 pneumonia 45%)
Health Outcomes	IPD Cases	-226	-163	-76	-84
	Hospitalized Pneumonia Cases	-4,961	-1,858	-2,047	-5,262
	Non-hospitalized Pneumonia Cases	-7,252	-2,715	-2,205	-5,611
	Deaths due to IPD	-33	-24	-10	-11
	Deaths due to Pneumonia	-332	-124	-79	-207
	QALYs	3,053	990	709	1,624
	Life-years	4,627	1,587	1,101	2,611
Costs	🙃 Total Cost	\$199	\$284	\$398	\$361
	o Medical Costs	-\$139	-\$54	-\$25	-\$63
	E Vaccine Costs	\$338	\$338	\$423	\$423
Cost	က် Cost/QALY	\$65,306	\$286,855	\$561,417	\$222,132
	so Cost/Life-year	\$43,087	\$178,848	\$361,367	\$138,122

ACIP EtR Framework Elements

- Statement of problem
- Benefits and harms with GRADE
- Values and preferences of target population
- Acceptability to stakeholders
- Resource use Work Group Perspective
- Feasibility

Resources Used

- Summary: Estimated resources used higher now than in 2014
- Question: Is the intervention a reasonable and efficient use of resources?
- Judgment: No Probably Uncertain Probably Yes Varies

ACIP EtR Framework Elements

- Statement of problem
- Benefits and harms with GRADE
- Values and preferences of target population
- Acceptability to stakeholders
- Resource use
- Feasibility Work Group Perspective

Feasibility Considerations

- Current recommendations are complex, but have been integrated into many health care and public health systems
- Universal age-based recommendations are easier to implement than risk-based recommendations
- Medicare covers pneumococcal vaccination series (PCV13 and PPSV23) for adults ≥65 years old
 - If a change is made CMS will review the new recommendation and the supporting evidence
- Some state regulations that allow public health nurses and pharmacists to provide PCV13 are tied to ACIP recommendations
- Effective communication strategies will be needed if policy changes are considered

Feasibility

- Question: Is the current intervention feasible to continue?
- Judgement: No Probably Uncertain Probably Yes Varies no yes

ACIP EtR Framework Elements

- Statement of problem
- Benefits and harms with GRADE
- Values and preferences of target population
- Acceptability to stakeholders
- Resource use
- Feasibility

Type of Recommendation

- Options for consideration
 - A. We do <u>not</u> recommend the intervention (PCV13 in series with PPSV23 no longer recommended for immunocompetent adults ≥65 years old)
 - B. We recommend the intervention for individuals based on clinical decision-making (PCV13 in series with PPSV23 would be given to immunocompetent adults ≥65 years based on patient-provider judgement)
 - C. We recommend the intervention (continue PCV13 in series with PPSV23 for immunocompetent adults ≥65 years old)

Summary of Key Issues

Reasons Raised in Favor of <u>Continuing</u> Routine PCV13 Use		Reasons Raised in Favor of <u>Discontinuing</u> Routine PCV13 Use		
•	PCV13 effective in preventing PCV13-type pneumococcal disease PCV13-type disease has been reduced through indirect effects, but not eliminated	•	Overall impact on PCV13-type disease from vaccinating older adults is minimal in the context of indirect effects from pediatric PCV use	
•	Easier to adhere to universal prevention strategies than to risk-based ones Frequent changes in recommendations may negatively impact the perceived importance of future adult vaccine recommendations and may present implementation challenges	•	Low remaining burden of PCV13-type disease limits the potential benefit from direct effects Lack of clear population-level impact on disease since 2014 Judicious use of resources Simplification of the recommendations	

Next Steps — June 2019

- Provide updated summary of the Evidence to Recommendations framework to ACIP including on studies being finalized:
 - Direct effects:
 - Mathematical model estimating PCV13 direct and indirect effects against IPD using data from Active Bacterial Core Surveillance updated
 - 2. Case-control studies estimating PCV13 VE against IPD updated
 - Trends by serotype: Native American Adult Pneumonia Etiology Study updated
 - Acceptability and Feasibility: Adult and Child Consortium for Health Outcomes Research and Delivery Science, primary care provider survey
- Expected ACIP vote

Acknowledgements

- ACIP and the Pneumococcal Work Group
- Evidence Reviewers: Michelle Gaglia, Ryan Gierke, Jennifer Loo Farrar, Amara Fazal, Penina Haber, Miwako Kobayashi, Megan Light, Andrew Leidner, Jenny Milucky, Doug Outcalt-Campos, Asa Ohsaki, Nong Shang, Joanna Taliano, Wei Xing

Thank you!

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

Available for iOS and Android

cdc.gov/vaccines/pneumoapp

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

GRADE References

1. Bonten MJ, Huijts SM, Bolkenbaas M, et al. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. New England Journal of Medicine **2015**; 372(12): 1114-25.

2. Gessner BD, Jiang Q, Van Werkhoven CH, et al. A public health evaluation of 13-valent pneumococcal conjugate vaccine impact on adult disease outcomes from a randomized clinical trial in the Netherlands. Vaccine **2018**; 31: 31.

3. Pilishvili T, Almendares O, Xing W, et al. Effectiveness of pneumococcal vaccines against invasive pneumococcal disease (IPD) among adults >65 years old. ISPPD Meeting **2018**.

4. Pilishvili T, Almendares O, Nanduri S, et al. Evaluation of pneumococcal vaccines effectiveness against invasive pneumococcal disease (IPD) among U.S. Medicare beneficiaries ≥65 years old. ISSPD Meeting **2018**.

5. Active Bacterial Core Surveillance /Emerging Infections Program N. ABCs Report: Streptococcus pneumoniae, 2016.

6. Webber C, Patton M, Patterson S, et al. Exploratory efficacy endpoints in the Community-Acquired Pneumonia Immunization Trial in Adults (CAPITA). Vaccine **2017**; 35(9): 1266-72.

7. McLaughlin JM, Jiang Q, Isturiz RE, et al. Effectiveness of 13-Valent Pneumococcal Conjugate Vaccine Against Hospitalization for Community-Acquired Pneumonia in Older US Adults: A Test-Negative Design. Clinical Infectious Diseases **2018**; 21: 21.

8. Ramirez JA, Wiemken TL, Peyrani P, et al. Adults Hospitalized With Pneumonia in the United States: Incidence, Epidemiology, and Mortality. Clin Infect Dis **2017**; 65(11): 1806-12.

9. Prato R, Fortunato F, Cappelli MG, Chironna M, Martinelli D. Effectiveness of the 13-valent pneumococcal conjugate vaccine against adult pneumonia in Italy: a case-control study in a 2-year prospective cohort. BMJ Open **2018**; 8(3): e019034.

10. Swerdlow D. Incidence of Community-Acquired Pneumonia in a US Adult Population. ACIP Meeting **2018**.

11. Gierke R. Estimating impact of 13-valent pneumococcal conjugate vaccine on pneumococcal pneumonia among US adults. ACIP Meeting **2018**.

12. Lessa FC, Spiller M. Effectiveness of PCV13 in Adults Hospitalized with Pneumonia Using Centers for Medicare and Medicaid Data, 2014-2017. ACIP Meeting **2019**.

GRADE References

13. Jackson LA, El Sahly HM, George S, et al. Randomized clinical trial of a single versus a double dose of 13-valent pneumococcal conjugate vaccine in adults 55 through 74 years of age previously vaccinated with 23-valent pneumococcal polysaccharide vaccine. Vaccine **2018**; 36(5): 606-14.

14. Juergens C, de Villiers PJ, Moodley K, et al. Safety and immunogenicity of 13-valent pneumococcal conjugate vaccine formulations with and without aluminum phosphate and comparison of the formulation of choice with 23-valent pneumococcal polysaccharide vaccine in elderly adults: a randomized open-label trial. Human vaccines & Immunotherapeutics **2014**; 10(5): 1343-53.

15. Shiramoto M, Hanada R, Juergens C, et al. Immunogenicity and safety of the 13-valent pneumococcal conjugate vaccine compared to the 23-valent pneumococcal polysaccharide vaccine in elderly Japanese adults. Human vaccines & Immunotherapeutics **2015**; 11(9): 2198-206.

16. Durando P, Rosselli R, Cremonesi I, et al. Safety and tolerability of 13-valent pneumococcal conjugate vaccine in the elderly. Human vaccines & Immunotherapeutics **2015**; 11(1): 172-7.

17. Haber P, Arana J, Pilishvili T, Lewis P, Moro PL, Cano M. Post-licensure surveillance of 13-valent pneumococcal conjugate vaccine (PCV13) in adults aged 19years old in the United States, Vaccine Adverse Event Reporting System (VAERS), June 1, 2012-December 31, 2015. Vaccine **2016**; 34(50): 6330-4.

18. Shiramoto M, Irie S, Juergens C, et al. Immunogenicity and safety of 13-valent pneumococcal conjugate vaccine when administered to healthy Japanese adults aged >=50 years. An open-label trial. Human vaccines & Immunotherapeutics **2014**; 10(7): 1850-8.

19. Tinoco JC, Juergens C, Ruiz Palacios GM, et al. Open-label trial of immunogenicity and safety of a 13-valent pneumococcal conjugate vaccine in adults >= 50 years of age in Mexico. Clinical & Vaccine Immunology: CVI **2015**; 22(2): 185-92.

20. Tseng HF, Qian L, Liu ILA, et al. Pneumococcal conjugate vaccine safety in elderly adults. Open Forum Infectious Diseases **2018**; 5(6): 1-8.